Random converter |
Калькулятор мощности переменного токаЭтот калькулятор определяет активную, реактивную, полную и комплексную мощность, потребляемую устройством, подключенным к источнику переменного тока, по известным напряжению, току и коэффициенту мощности или фазовому сдвигу, а также характеру нагрузки (емкостная или индуктивная). Для расчетов, связанных с трехфазными системами, пользуйтесь нашим Калькулятором мощности трехфазного тока. Пример: Рассчитать активную, реактивную, полную и комплексную мощность, потребляемую устройством, включенным в сеть переменного тока, если известно, что эффективные значения тока и напряжения Urms = 3 V, Irms = 2 A и коэффициент мощности PF = 0. 5 или φ = –60° (емкостная нагрузка). Входные данные Действующее значение напряжения Urmsвольт (В)киловольт (кВ)мегавольт (МВ) Действующее значение тока Irmsампер (А)килоампер (кА) НагрузкаКоэффициент мощности PF Или Фазовый сдвиг φ ° Тип нагрузки ИндуктивнаяЕмкостная Поделиться Поделиться ссылкой на этот калькулятор, включая входные параметры Twitter Facebook Google+ VK Закрыть Выходные данные Пиковое значение напряжения Up В Пиковое значение тока Ip А Активная мощность P Вт Реактивная мощность Q Вар Полная мощность |S| ГВ·А Комплексная мощность S ГВ·А Для расчета всех четырех видов мощности введите действующие значения напряжения и тока, коэффициент мощности или фазовый сдвиг и тип нагрузки, и нажмите кнопку Рассчитать. Нажмите на ссылки ниже, чтобы посмотреть как работает калькулятор в различных режимах:
По этим трехфазным высоковольтным линиям электропередачи передается электроэнергия, выработанная на АЭС Пикеринг, расположенной на оз. Онтарио в 13 км от Торонто. Высокое напряжение используется для повышения эффективности передачи электроэнергии в результате уменьшения тепловых потерь в проводах. Определения и формулы Переменный ток Напряжение Мощность Активная и реактивная мощность Комплексная и полная мощность Коэффициент мощности Определения и формулыЭтот калькулятор используется для расчета мощности переменного тока и все, о чем говорится ниже, относится к переменному току. Если вы хотите рассчитать мощность по постоянному току, воспользуйтесь нашим Калькулятором мощности постоянного тока. В описании этого калькулятора вы найдете информацию о фундаментальных понятиях электротехники: заряде, силе тока, напряжении и мощности, а также о единицах их измерения. Здесь мы рассмотрим расчет электрической мощности в однофазной сети переменного тока. В отличие от постоянного тока, который течет только в одном направлении, переменный ток периодически изменяет направление и амплитуду с течением времени. Следовательно, этот калькулятор, который считает мощность переменного тока, значительно сложнее калькулятора мощности постоянного тока. Вместо просто мощности постоянного тока в схемах постоянного тока, здесь мы будем говорить сразу о четырех видах мощности: активной мощности, P, реактивной мощности, Q, комплексной мощности, S, and полной мощности, |S|. Похоже, что четыре мощности вместо одной — слишком сложно? Ничего, мы попробуем разобраться. Переменный токУстановленный на столбе в жилой зоне в Канаде однофазный распределительный трансформатор, подающий потребителю ток напряжением 120 V. Переменный ток может быть не только синусоидальной формы, как в сетевых розетках. Он может иметь любую форму, в том числе и не периодическую. Примером такой сложной формы может быть звук гитарной струны, в которой одновременно возникают колебания нескольких собственных частот струны. В результате кажется, что одновременно слышен звук нескольких частот. Однако, в описании этого калькулятора мы будем говорить только о синусоидальных колебаниях. Для уменьшения тепловых потерь в проводах линий электропередачи, которые переносят энергию от электростанции потребителям, используется высокое напряжение до сотен киловольт. Это высокое напряжение преобразуется в более безопасное напряжение 110 или 220 В. Использовать высокое напряжение без понижения было бы очень неудобно и опасно. Исторически сложилось так, что частота электросетей в разных странах различная, причем чаще всего встречаются частоты 50 и 60 Гц. В морской, авиационной и космической технике используется частота 400 Гц, так как она позволяет уменьшить вес оборудования, такого как трансформаторы и электродвигатели, а также увеличить скорость работы электродвигателей. Однако такая высокая частота неудобна для передачи на большие расстояния, так как в результате значительно увеличивается импеданс линий электропередачи из-за их индуктивности. Подробнее об электрическом токе — в нашем Конвертере электрического тока. НапряжениеМгновенное напряжение u(t) представляется функций времени: где Up — пиковое значение напряжения (максимальная амплитуда) в вольтах, ω — угловая частота в радианах в секунду и f — частота в герцах. Для описания напряжения используется также величина размаха напряжения или двойная амплитуда (англ. peak-to-peak amplitude) Upp = 2Up. Здесь мы используем для обозначения напряжения нижний регистр u(t), чтобы показать, что это выражение для изменения мгновенного напряжения в зависимости от времени t. Величиной размаха напряжения удобно пользоваться, например, при оценке максимального пробивного напряжения изоляции и конденсаторов. В то же время, размахом напряжения пользоваться неудобно, если нужно оценить мощность переменного тока. В этом случае удобно использовать действующее (среднеквадратичное, англ. root mean square, RMS) значение напряжения, так как такое напряжение нагревает чисто резистивную нагрузку точно так же, как это делает постоянный ток с тем же напряжением. Например, если действующее значение напряжения 220 В приложено к идеальному резистору, на нем выделится столько же тепла, сколько выделилось бы если бы к нему было приложено постоянное напряжение 220 В. Новые микропроцессорные мультиметры обычно измеряют действительное среднеквадратичное значение напряжение сигнала любой формы, так как они оцифровывают сигнал, то есть, преобразуют его в набор дискретных выборок, а затем рассчитывают среднеквадратичное значение напряжения. Соотношение между действующим (RMS) и амплитудным значением (А) для часто используемых периодических функций хорошо известно и получено в результате интегрирования одного периода этих функций по времени:
Подробную информацию о напряжении можно найти в нашем Конвертере электрического потенциала и напряжения МощностьВ типичной цепи переменного тока энергия передается по линии электропередачи от источника, например, электростанции или портативного генератора, к нагрузке, например, к лампе или телевизору. Поскольку соединительные провода имеют небольшое сопротивление, часть энергии расходуется на нагрев этих проводов и затем на нагрев окружающей среды. Бóльшая часть энергии передается в нагрузку. Если нагрузка резистивная, энергия преобразуется в тепловую и нагревает окружающую среду. Если нагрузка резистивно-индуктивная, например, электродвигатель, то электрическая энергия вначале преобразуется в механическую плюс тепловую (двигатель нагревается) и в дальнейшем вся она преобразуется в тепловую и опять же нагревает окружающую среду. Электрическая мощность P представляет собой скорость передачи энергии в нагрузку или ее преобразования: Здесь U — напряжение в вольтах, I — ток в амперах. В Европейских странах для обозначения напряжения обычно используют букву U. В Северной Америке для обозначения напряжения обычно используют V, потому что V — сокращение для вольта. Конечно, это неудобно, но все привыкли, так же как к фунтам, футам и дюймам. Сравните: V = 1 V и U = 1 V. Что удобнее? Из закона Ома мы знаем, что Поэтому мощность на резистивной нагрузке можно выразить как где R — сопротивление в омах. В нашем Конвертере единиц мощности, описано, что мощность измеряется в ваттах (Вт). Процесс преобразования электрической энергии в тепловую обычно называется джоулевым нагревом. Для установившегося синусоидального сигнала мгновенное напряжение u с фазовым углом φu и мгновенный ток i с фазовым углом φi можно выразить в виде Для удобства мы предположим, что φi = 0, когда ток проходит положительный максимум. Тогда разность фаз между током и напряжением становится равной просто φu. Теперь можно преобразования функции для тока и напряжения к виду Мгновенная мощность определяется произведением тока и напряжения Преобразуем эту формулу, используя тригонометрическое тождество для произведения двух косинусов: Теперь воспользуемся тригонометрическим тождеством для косинуса суммы двух аргументов: Мгновенное напряжение, ток и мощность чистого синусоидального процесса в индуктивной нагрузке. Ток в индуктивной нагрузке отстает от напряжения (φu = 60°) и, следовательно, в данном случае мы имеем «отстающий» коэффициент мощности или cos φ = 0,5. Отрицательная часть красной синусоиды функции мощности под горизонтальной осью показывает часть мощности, которая возвращается в систему На рисунке выше показано соотношение между мгновенными значениями напряжения, тока и мощности в индуктивной нагрузке в предположении, что фазовый сдвиг φu = 60°. Для чисто резистивной нагрузки мощность определяется так: или Среднеквадратичное значение называют также эффективным значением синусоидального тока или напряжения. Активная и реактивная мощностьМы можем переписать формулу для мгновенной мощности в виде или где величина называется активной, P. Это часть полной мощности, которая преобразуется в нагрузке в тепло и другие виды энергии и измеряется в ваттах (Вт). Величина называется реактивной мощностью, Q. Это часть полной мощности, которая в течение каждого цикла возвращается к источнику энергии и измеряется в реактивных вольт-амперах (вар). Эту единицу можно использовать с десятичными приставками для образования дольных и кратных единиц, например, мвар, квар, Мвар (мегавар), ТВА (теравар), ГВА (гигавар) и т. д. Можно преобразовать выражение для активной и реактивной мощности с использованием среднеквадратичных значений напряжения и тока: Мгновенное значение напряжения и тока в емкостной нагрузке; ток опережает напряжение; фазовый угол отрицательный. Щелкните для просмотра этого примера в калькуляторе. Конечно, в реальной жизни все нагрузки не только резистивные, но также емкостные или индуктивные. Даже электронагреватель имеет определенные емкость и индуктивность (спираль — катушка индуктивности, а отдельные витки образуют конденсаторы). Трансформаторы и электродвигатели являются примерами индуктивных нагрузок. Конденсаторы и катушки индуктивности запасают энергию во время протекания в них переменного тока, в результате чего направление передачи энергии в цепи периодически изменяется. В цепи переменного тока с чисто резистивной нагрузкой синусоидальные ток и напряжение изменяют полярность одновременно, поэтому направление передачи энергии не изменяется и передается только активная энергия. Если нагрузка чисто реактивная (индуктивная или емкостная), то разность фаз между напряжением и током равна 90° (подробнее об этом поведении RLC цепей). В этом случае энергия в нагрузку вообще не передается. В то же время, электроэнергия течет от источника в нагрузку и возвращается назад по линиям электропередачи, которые в результате нагреваются и нагревают окружающую среду. В связи с тем, что реальные нагрузки всегда имеют некоторую индуктивность и емкость, в них всегда имеется активная и реактивная составляющие мощности. Комплексная и полная мощностьВозможно для того чтобы всё усложнить, а может быть, наоборот, чтобы упростить, инженеры придумали еще два вида мощности: комплексную мощность, S, измеряемую в вольт-амперах (ВА) и полную мощность, |S|, которая является векторной суммой активной и реактивной мощностей и также измеряется в вольт-амперах. Эту единицу можно использовать с десятичными приставками для образования дольных и кратных единиц, например, мВА, кВА, МВА (мегавольт-ампер), ТВА (теравольт-ампер), ГВА (гигавольт-ампер) и т. д. Комплексная мощность, S — комплексная сумма активной и реактивной мощностей: Мы увидим, что комплексная мощность объединяет активную и реактивную мощности, а также коэффициент мощности. Полная мощность, |S| — модуль (абсолютная величина) комплексной мощности: Треугольник мощностей показывает комплексную мощность, которая является векторной суммой активной P и реактивной Q мощностей; полная мощность |S| является абсолютной величиной (модулем) комплексной мощности. Из треугольника мощностей имеем: Используя тригонометрическое тождество, являющееся следствием теоремы Пифагора и приведенные выше формулы для P и Q, можно записать: То есть, полная мощность |S| является произведением действительных значений напряжения и тока. Комплексная мощность учитывается при разработке и эксплуатации энергетических систем, потому что линии электропередач, трансформаторы и генераторы должны быть рассчитаны на полную мощность, а не только на мощность, которая выполняет полезную работу. Если реактивной мощности недостаточно, это может привести к понижению напряжения и даже, в свою очередь, к большой аварии в электросистеме (блэкауту), например, такой, как авария в энергосистеме США и Канады в 2003 году, в результате которой 55 миллионов человек на северо-западе США и в канадской провинции Онтарио остались без электроэнергии. Электродвигателя являются примерами индуктивных промышленных нагрузок Коэффициент мощностиКоэффициент мощности определяется как отношения реальной (активной) мощности, поглощенной нагрузкой P к полной мощности |S| в системе. В русскоязычной литературе коэффициент мощности обычно обозначается λ (в процентах) или cos φ, где φ — угол сдвига фаз между током и напряжением. В этой статье, поскольку она является переводом с английского без изменения формул, он обозначается PF от англ. power factor. Коэффициент мощности представляет собой безразмерное число в интервале –1 ≤ PF ≤ 1 и часто выражается в процентах. Отрицательный коэффициент мощности указывает, что «нагрузка» в действительности таковой не является (поэтому в кавычках) и реально представляет собой генератор, вырабатывающий электроэнергию, которая отправляется назад в систему. Одним из примеров такой энергии является энергия, получаемая от установленных на крыше жилого дома солнечных батарей. Блок управления солнечными батареями измеряет напряжение, частоту и фазу в сети, синхронизирует свою работу с сетью и выдает в нее лишнюю энергию. В таких случаях современные цифровые электросчетчики показывают отрицательную величину коэффициента мощности. Если нагрузка чисто резистивная, то напряжение и ток находятся в фазе, коэффициент мощности равен единице и реактивная мощность, которая может быть опережающей или отстающей, равна нулю. Если нагрузка имеет активно-емкостной характер, коэффициент мощности называется опережающим, так как ток опережает напряжение. Если же нагрузка имеет активно-индуктивный характер, то коэффициент мощности называют отстающим, так как ток отстает от напряжения. Из приведенных выше формул для P и S следует, что для чисто синусоидального напряжения, PF = cos ϕu: Здесь φu — сдвиг фаз между током и напряжением. Коэффициент мощности уменьшается, если активная мощность уменьшается с увеличением сдвига фаз между напряжением источника питания и током. Коэффициент мощности чисто активной (резистивной) нагрузки равен единице. Отрицательный сдвиг фаз указывает, что нагрузка емкостная, в которой ток опережает напряжение. Такая нагрузка «отдает» реактивную мощность в систему. Положительный сдвиг фаз показывает, что нагрузка имеет индуктивный характер, ток отстает от напряжения и нагрузка «потребляет» реактивную мощность. В промышленности коэффициент мощности имеет очень важное значение, так как энергосбытовые компании повышают цены на электроэнергию, если коэффициент мощности падает ниже определенного предела. Работу ведь выполняет активная мощность, а реактивная просто движется туда-сюда между нагрузкой и источником энергии. Образующиеся при этом большие токи повышают потери энергии при передаче. В результате требуется более мощное оборудование для ее получения, а также более толстые провода для передачи, в которых энергия бесполезно нагревает окружающую среду. Если вам интересно как реальные нелинейные нагрузки искажают форму тока и как описанный выше классический треугольник мощностей превращается в объемную фигуру, откройте наш калькулятор для пересчета вольт-амперов в ватты. В 50-х и в начале 60-х гг. прошлого века в Европе родители могли подарить на Рождество своему чаду набор для сборки лампового радиоприемника с питанием от сети 220 В… Не по теме. Когда я писал эту статью, мне попалось мнемоника, которую преподаватели часто используют для облегчения запоминания материала по электротехнике: УЛИЦА (U на L, I на C). Что это за чушь? Зачем вообще бедным студентам зазубривать кто кого опережает? Меня всегда удивляло множество мнемоник, предлагаемых преподавателями студентам для зазубривания вещей, которые студенты должны понимать, а не помнить. На мой взгляд, студенты должны каждый раз думать, когда они отвечают на вопрос, например, о фазовых соотношениях между током и напряжением в емкостной или индуктивной цепи — кто кого опережает: ток опережает напряжение или напряжение опережает ток. Зазубрить, конечно, проще, да и преподавателю проще проверить зубрежку, чем вникать в тонкости и тому, и другому. Студентам легче, потому что не нужно понимать проблему, достаточно зазубрить простое мнемоническое правило. Преподавателям намного быстрее и, главное, дешевле для самого университета просто проверить ответы на вопросы с несколькими вариантами ответов вместо того, чтобы оценить как студенты поняли материал во время разговора на экзамене. Не знаю кто как, а я никогда не помнил кто кого опережает и если нужно об этом сказать, то я вспоминаю стрелку мультиметра в режиме измерения сопротивления, которая, если подключить конденсатор достаточно большой емкости, резко отклоняется вправо и потом медленно возвращается назад. Все понятно: ток опережает напряжение — ток уже большой, а напряжение постепенно нарастает. Не нужна мнемоника! Не нужно зубрить электротехнику! Её нужно понимать! Нужно взять аналоговый тестер или цифровой мультиметр с качественным эмулятором стрелочной шкалы, пощупать и всё станет понятно. Можно даже языком пощупать, если напряжение меньше 10 В. Я в детстве щупал и до сих пор живой. Если же студент не хочет брать мультиметр, чтобы понять то, что он изучает, то, как мне кажется, ему лучше вместо электроники изучать историю или иностранные языки. Короче, окончить университет по специальности «умею читать и писать». Интересно, что в 50-х и в начале 60-х гг. прошлого века в Европе родители могли подарить на Рождество своему чаду набор для сборки радиоприемника на двух лампах с питанием от сети 220 В и никто не боялся, что ребенок получит травму. Может быть потому, что в 50-х и начале 60-х еще были живы воспоминания об ужасной войне и по сравнению с бомбардировками (я хорошо помню мамины рассказы об этом) опасность розетки на 220 вольт не казалась достаточно серьезной? Я в девять лет собрал двухламповый приемник и хорошо помню, что делал это один, без присмотра взрослых. Правда, сам я приемник запустить не смог, так как схемы читать еще не научился и собирал по монтажной схеме, в которой была ошибка. Отец помог его наладить. Автор статьи: Анатолий Золотков Вас могут заинтересовать и другие калькуляторы из группы «Электротехнические и радиотехнические калькуляторы»:Калькулятор резистивно-емкостной цепи Калькулятор параллельных сопротивлений Калькулятор параллельных индуктивностей Калькулятор емкости последовательного соединения конденсаторов Калькулятор импеданса конденсатора Калькулятор импеданса катушки индуктивности Калькулятор взаимной индукции Калькулятор взаимоиндукции параллельных индуктивностей Калькулятор взаимной индукции — последовательное соединение индуктивностей Калькулятор импеданса параллельной RC-цепи Калькулятор импеданса параллельной LC-цепи Калькулятор импеданса параллельной RL-цепи Калькулятор импеданса параллельной RLC-цепи Калькулятор импеданса последовательной RC-цепи Калькулятор импеданса последовательной LC-цепи Калькулятор импеданса последовательной RL-цепи Калькулятор импеданса последовательной RLC-цепи Калькулятор аккумуляторных батарей Калькулятор литий-полимерных аккумуляторов для дронов Калькулятор индуктивности однослойной катушки Калькулятор индуктивности плоской спиральной катушки для устройств радиочастотной идентификации (RFID) и ближней бесконтактной связи (NFC) Калькулятор расчета параметров коаксиальных кабелей Калькулятор светодиодов. Расчет ограничительных резисторов для одиночных светодиодов и светодиодных массивов Калькулятор цветовой маркировки резисторов Калькулятор максимальной дальности действия РЛС Калькулятор зависимости диапазона однозначного определения дальности РЛС от периода следования импульсов Калькулятор радиогоризонта и дальности прямой радиовидимости РЛС Калькулятор радиогоризонта Калькулятор эффективной площади антенны Симметричный вибратор Калькулятор частоты паразитных субгармоник (алиасинга) при дискретизации Калькулятор мощности постоянного тока Калькулятор пересчета ВА в ватты Калькулятор мощности трехфазного переменного тока Калькулятор преобразования алгебраической формы комплексного числа в тригонометрическую Калькулятор коэффициента гармонических искажений Калькулятор законов Ома и Джоуля — Ленца Калькулятор времени передачи данных Калькулятор внутреннего сопротивления элемента питания батареи или аккумулятора Калькуляторы Электротехнические и радиотехнические калькуляторы |
Калькулятор перевода силы тока в мощность, ампер в ватты
Для расчёта нагрузки на электрическую сеть и затрат электроэнергии можно использовать специальный калькулятор перевода силы тока в мощность. Такая функция появилась недавно, значительно облегчив ручное определение.
Хотя формулы известны давно, далеко не все хорошо знают физику, чтобы самостоятельно определять силу тока в сети. Калькулятор помогает с этим, поскольку для работы достаточно знать напряжение и мощность.
Содержание
- Что такое мощность Ватт [Вт]
- Что такое Сила тока. Ампер [А]
- Сколько Ватт в 1 Ампере?
- Таблица перевода Ампер – Ватт
- Зачем нужен калькулятор
- Как пользоваться
Что такое мощность Ватт [Вт]
Мощность — величина, определяющая отношение работы, которую выполняет источник тока, за определённый промежуток времени. Один ватт соответствует произведению одного ампера на один вольт, но при определении трат на электроэнергию используется величина киловатт/час.
Она соответствует расходу одной тысячи ватт за 60 минут работы. Именно по этому показателю определяется стоимость услуг электроэнергии.
В большинстве случаев мощность, которую потребляет прибор, указана в технической документации или на упаковке. Указанное количество производится за один час работы.
Например, компьютер с блоком питания 500 Вт будет крутить 1 кВт за 2 часа работы.
Помочь определить силу тока при известной мощности поможет калькулятор, который делает перевод одной физической величины в другую.
Что такое Сила тока. Ампер [А]
Сила тока представляет собой скорость, с которой электрический заряд течёт по проводнику. Один ампер равен заряду в один кулон, который проходит через проводник за одну секунду. Один кулон представляет собой очень большой заряд, поэтому в большинстве устройств эта величина измеряется в миллиамперах.
Сила тока зависит от сечения проводника и его длины. Это необходимо учитывать при планировке сооружений, а также выборе электрических приборов. Хотя большинству не следует задумываться на этот счёт, поскольку это задача инженеров и проектировщиков.
Сколько Ватт в 1 Ампере?
Для определения мощности цепи также важно понятие напряжения. Это электродвижущая сила, перемещающая электроны. Она измеряется в вольтах. Большинство приборов имеют в документации эту характеристику.
Чтобы определить мощность при силе тока в один ампер, необходимо узнать напряжение сети. Так, для розетки в 220 вольт получится: P = 1*220 = 220 Вт. Формула для расчёта: P = I*U, где I — сила тока, а U — напряжение. В трёхфазной сети нужно учитывать поправочный коэффициент, отражающий процент эффективности работы. В большинстве случаев он составляет от 0,67 до 0,95.
Таблица перевода Ампер – Ватт
Для перевода ватт в амперы необходимо воспользоваться предыдущей формулой, развернув её. Чтобы вычислить ток, необходимо разделить мощность на напряжение: I = P/U. В следующей таблице представлена сила тока для приборов с различным напряжением — 6, 12, 24, 220 и 380 вольт.
Помните, что для сетей с высоким напряжением, указанная сила тока отличается в зависимости от коэффициента полезного действия.
Таблица соотношения ампер и ватт, в зависимости от напряжения.
6В | 12В | 24В | 220В | 380В | |
5 Вт | 0,83А | 0,42А | 0,21А | 0,02А | 0,008А |
6 Вт | 1,00А | 0,5А | 0,25А | 0,03А | 0,009А |
7 Вт | 1,17А | 0,58А | 0,29А | 0,03А | 0,01А |
8 Вт | 1,33А | 0,66А | 0,33А | 0,04А | 0,01А |
9 Вт | 1,5А | 0,75А | 0,38А | 0,04А | 0,01А |
10 Вт | 1,66А | 0,84А | 0,42А | 0,05А | 0,015А |
20 Вт | 3,34А | 1,68А | 0,09А | 0,03А | |
30 Вт | 5,00А | 2,5А | 1,25А | 0,14А | 0,045А |
40 Вт | 6,67А | 3,33А | 1,67А | 0,13А | 0,06А |
50 Вт | 8,33А | 4,17А | 2,03А | 0,23А | 0,076А |
60 Вт | 10,00А | 5,00А | 2,50А | 0,27А | 0,09А |
70 Вт | 11,67А | 5,83А | 2,92А | 0,32А | 0,1А |
80 Вт | 13,33А | 6,67А | 3,33А | 0,36А | 0,12А |
90 Вт | 15,00А | 7,50А | 3,75А | 0,41А | 0,14А |
100 Вт | 16,67А | 3,33А | 4,17А | 0,45А | 0,15А |
200 Вт | 33,33А | 16,66А | 8,33А | 0,91А | 0,3А |
300 Вт | 50,00А | 25,00А | 12,50А | 1,36А | 0,46А |
400 Вт | 66,66А | 33,33А | 16,7А | 1,82А | 0,6А |
500 Вт | 83,34А | 41,67А | 20,83А | 2,27А | 0,76А |
600 Вт | 100,00А | 50,00А | 25,00А | 2,73А | 0,91А |
700 Вт | 116,67А | 58,34А | 29,17А | 3,18А | 1,06А |
800 Вт | 133,33А | 66,68А | 33,33А | 3,64А | 1,22А |
900 Вт | 150,00А | 75,00А | 37,50А | 4,09А | 1,37А |
1000 Вт | 166,67А | 83,33А | 41,67А | 4,55А | 1,52А |
Используя таблицу также легко определить мощность, если известны напряжение и сила тока. Это пригодится не только для расчёта потребляемой энергии, но и для выбора специальной техники, отвечающей за бесперебойную работу или предотвращающей перегрев.
Зачем нужен калькулятор
Онлайн-калькулятор применяется для перевода двух физических величин друг в друга. Перевести амперы в ватты при помощи такого калькулятора — минутное дело. Сервис позволит быстро вычислить необходимую характеристику прибора, определить электроэнергию, которую будет расходовать техника за час работы.
Как пользоваться
Чтобы перевести ток в мощность, достаточно ввести номинальное напряжение и указать вторую известную величину. Калькулятор автоматически рассчитает неизвестный показатель и выведет результат.
Узнать напряжение и стандартную силу тока можно в технической документации устройства. Для приборов бытовой техники обычно указывается мощность, из которой также легко вычислить ток. Для удобства в калькуляторе можно переключать ватты на киловатты, а ампера на миллиамперы.
Читайте далее:
Калькулятор мощности, напряжения, тока и сопротивления
Этот калькулятор основан на простом законе Ома. Как мы уже поделились
Калькулятор мощности, напряжения, тока и сопротивления
Введите любые два из следующих значений и нажмите кнопку расчета. В результате отобразятся рассчитанные значения.
Мощность (Вт): | ||
Напряжение (В): | ||
Ток (А): | ||
Сопротивление (Ом): | ||
Формулы мощности, напряжения, тока и сопротивления
Ниже приведены возможные формулы и уравнения для этого калькулятора
(1) Формулы электрической мощности в цепях постоянного тока
(2) Формула электрического потенциала или напряжения в цепях постоянного тока
- В = I x R
- В = П/Я
- В = √ (П х Р)
(3) Формулы электрического тока в цепи постоянного тока
- I=V/R
- Я = P/V
- I = √P/R
(4) Формулы электрического сопротивления
- R = V/I
- R = P/I 2
- Р = В 2 /P
*Где
- I = ток в амперах (А)
- В = напряжение в вольтах (В)
- P = мощность в ваттах (Вт)
- R = сопротивление в Ом (Ом)
Связанные электрические калькуляторы:
- Калькулятор мощности, напряжения, тока и сопротивления (P, V, I, R)
- Калькулятор автоматического выключателя Калькулятор с примерами
- Усовершенствованный калькулятор падения напряжения
- Калькулятор размеров электрических проводов и кабелей (медь и алюминий)
- AWG/SWG в мм/мм2, дюймы/дюйм3 и тысячные милы Калькулятор и преобразование Калькулятор стандартного калибра проводов
- «SWG» — таблица размеров и размер SWG Калькулятор американского калибра проводов
- «AWG» — таблица размеров AWG и таблица
- Конденсаторная батарея в кВАр и мкФ Калькулятор для коррекции коэффициента мощности Калькулятор коррекции коэффициента мощности
- — как найти конденсатор PF в мкФ и квар?
- Правило делителя напряжения – Калькулятор, примеры и приложения
- Калькулятор цветового кода резистора — 3, 4, 5 и 6 полос
- Калькулятор требуемой величины резистора для схемы светодиода
- IC 555 Калькулятор таймера с формулами и уравнениями
- Калькулятор срока службы батареи
- Еще больше онлайн-калькуляторов для электротехники/электроники
Показать полную статью
Связанные статьи
Кнопка «Вернуться к началу»
Онлайн-калькулятор: Электричество, работа и мощность
Учеба Физика
Этот онлайн-калькулятор поможет вам решить задачи на работу, совершаемую током и электрической мощностью. Он может рассчитывать ток, напряжение, сопротивление, работу, мощность и время в зависимости от того, какие переменные известны, а какие неизвестны
С помощью этого онлайн-калькулятора можно проверить решение задач на электроэнергию и электромонтажные работы. Чтобы использовать его, введите известные значения и оставьте неизвестные значения пустыми. Если данных достаточно, нажмите кнопку «Рассчитать», и калькулятор найдет все неизвестные.
Пример задачи: Кран потребляет ток силой 40А от электрической сети напряжением 380В. Крану потребовалось 3,5 минуты, чтобы поднять бетонную плиту. Найдите работу, которую совершил кран.
Чтобы получить решение, введите 40 в поле «Ток», затем введите 380 в поле «Напряжение», затем 3,5 в поле «Время», переключив единицы времени на «минуты». После этого нажмите кнопку «Рассчитать». Калькулятор выдает работу в джоулях, мощность в ваттах и сопротивление в омах (потому что может). Ниже вы можете найти формулы, используемые для расчетов под калькулятором.
Electricity, Work, and Power
Current
UnitsmAAmpkAMA
Voltage
UnitsmVVoltkVMV
Resistance
UnitsmOhmOhmkOhmMOhm
UnitsJoulesMJkWh
UnitsWattkWtMWt
UnitsSecondsMinutesHours
Calculation precision
Digits after the десятичная точка: 2
Ток, Ампер
Напряжение, Вольт
Сопротивление, OHMS
Работа, Joules
Power, Watts
Время, секунд
Электрические работы и мощность электрического течения
Электрические работы — это работа, выполненная на электрическом зарядке на электрическую зарядку на электрическую зарядку на электрическую зарядку на электрическом зарядке, выполненная на электрической зарядке на электрическом зарядке.